If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 3c^{2}-19c=14 | | 2(w+5)=4(4w+6) | | x-2(x-6)=-x+10 | | 3=51/y | | 3y^2=9 | | 4−(x+3)=12 | | 3(4-3x)=12-6x | | 14.65=(2)(0.025)(x) | | -4(-8-2x)=48 | | 16=-(x-1)+4 | | n/6-1=(-13) | | 3q+19=10 | | 3x+2=-9+4x | | (x+3)^2=4X | | -3x-10=3x-40 | | 2(4x+3)=2x+6+6x | | 3(4-2x)=12-6x | | 4c*2=48 | | 8=16-8b | | 12.50x=8 | | 4s-12=-4 | | 30=4z | | 13-e(-7)=-119 | | 3-3w=5 | | 18=a/16 | | 3=61/y | | -6x-9=-7-7x | | t+17=-25 | | 315=(0.015)(3)(x) | | 4y=3×=7 | | 30+5(x)=25 | | 27/x-8=1 |